Pseudo basic steps: bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming
نویسندگان
چکیده
An elementary, but fundamental, operation in disjunctive programming is a basic step, which is the intersection of two disjunctions to form a new disjunction. Basic steps bring a disjunctive set in regular form closer to its disjunctive normal form and, in turn, produce relaxations that are at least as tight. An open question is: What are guaranteed bounds on the improvement from a basic step? In this paper, using properties of a convex disjunctive program’s hull reformulation and multipliers from Lagrangian decomposition, we introduce an operation called a pseudo basic step and use it to provide provable bounds on this improvement along with techniques to exploit this information when solving a disjunctive program as a convex MINLP. Numerical examples illustrate the practical benefits of these bounds. In particular, on a set of K-means clustering instances, we make significant bound improvements relative to state-of-the-art commercial mixed-integer programming solvers.
منابع مشابه
A Lagrangian Decomposition Algorithm for Robust Green Transportation Location Problem
In this paper, a green transportation location problem is considered with uncertain demand parameter. Increasing robustness influences the number of trucks for sending goods and products, caused consequently, increase the air pollution. In this paper, two green approaches are introduced which demand is the main uncertain parameter in both. These approaches are addressed to provide a trade-off b...
متن کاملA hierarchy of relaxations for nonlinear convex generalized disjunctive programming
We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of th...
متن کاملGeneralized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization
Abstract. Generalized disjunctive programming (GDP) is an extension of the disjunctive programming paradigm developed by Balas. The GDP formulation involves Boolean and continuous variables that are specified in algebraic constraints, disjunctions and logic propositions, which is an alternative representation to the traditional algebraic mixedinteger programming formulation. After providing a b...
متن کاملAlgorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs
In this work, we propose an algorithmic approach to improve mixed-integer models that are originally formulated as convex Generalized Disjunctive Programs (GDP). The algorithm seeks to obtain an improved continuous relaxation of the MILP/MINLP reformulation of the GDP, while limiting the growth in the problem size. There are three main stages that form the basis of the algorithm. The first one ...
متن کاملPosynomial geometric programming problem subject to max–product fuzzy relation equations
In this article, we study a class of posynomial geometric programming problem (PGPF), with the purpose of minimizing a posynomial subject to fuzzy relational equations with max–product composition. With the help of auxiliary variables, it is converted convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. Some pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURO J. Computational Optimization
دوره 6 شماره
صفحات -
تاریخ انتشار 2018